Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yu, Ming | Liu, Jiali | Liu, Yi; * | Yan, Gang
Affiliations: School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
Correspondence: [*] Corresponding author. Yi Liu, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China. E-mail: [email protected].
Abstract: Most existing RGB-D salient object detection (SOD) methods extract features of both modalities in parallel or adopt depth features as supplementary information for unidirectional interaction from depth modality to RGB modality in the encoder stage. These methods ignore the influence of low-quality depth maps, and there is still room for improvement in effectively fusing RGB features and depth features. To address the above problems, this paper proposes a Feature Interaction Network (FINet), which performs bi-directional interaction through feature interaction module (FIM) in the encoder stage. The feature interaction module is divided into two parts: depth enhancement module (DEM) filters the noise in the depth features through the attention mechanism; and cross enhancement module (CEM) effectively interacts RGB features and depth features. In addition, this paper proposes a two-stage cross-modal fusion strategy: high-level fusion adopts the semantic information of high level for coarse localization of salient regions, and low-level fusion makes full use of the detailed information of low level through boundary fusion, and then we progressively refine high-level and low-level cross-modal features to obtain the final saliency prediction map. Extensive experiments show that the proposed model achieves better performance than eight state-of-the-art models on five standard datasets.
Keywords: RGB-D salient object detection, feature interaction, depth enhancement module, cross enhancement module, cross-modal fusion
DOI: 10.3233/JIFS-233225
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 2, pp. 4543-4556, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]