Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bu, Yanbin | Chen, Ting; * | Duan, Hongxiu | Liu, Mei | Xue, Yandan
Affiliations: School of Media Technology, Communication University of China, Nanjing, Nanjing, China
Correspondence: [*] Corresponding author. Ting Chen, School of Media Technology, Communication University of China, Nanjing, Nanjing 211172, China. E-mail: [email protected].
Abstract: In the modern world, structured and semi-structured knowledge bases hold a considerable amount of data. There-fore, people who are familiar with formal query languages should not be the only ones who can efficiently and clearly query them. Semantic Parsing (SP) is converting natural language utterances into formal meaning representations. The paper suggests a model for SP that uses a novel method of utilizing the Semi-Supervised Generative Adversarial Network (SS-GAN) to enhance the classifier performance. The proposed SS-GAN extends the fine-tuning of word embedding architectures using unlabeled examples in a generative adversarial environment. We provide a regularization strategy for addressing the mode missing problem and unstable training in SS-GAN. The main viewpoint is to use the extracted feature vectors from the discriminator. Hence, the generator produces outputs by aiding the discriminator’s learned features. A reconstruction loss is added to the loss function of the SS-GAN to drive the genera-tor to reconstruct outputs from the discriminator’s features, hence steering the generator toward actual data configurations. The proposed reconstruction loss improves the performance of SS-GAN, produces high-quality outputs, and may be combined with other regularization loss functions to improve the performance of diverse GANs. We employ BERT word embedding for our model, which can be included in a downstream task and fine-tuned as a model, while the pre-trained BERT model can capture various linguistic properties. We examine the suggested model using the WikiSQL and SparC datasets, and the analysis findings reveal our model outperforms its rivals. The findings from our experiments indicate that the need for labeled samples can be minimized, down to as few as 100 instances, while still achieving commendable classification outcomes.
Keywords: Semantic parsing, generative adversarial network, semi-supervised learning, BERT
DOI: 10.3233/JIFS-233212
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 3, pp. 6577-6588, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]