Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yue, Lizhu | Wang, Qian; *
Affiliations: Department of Business Administration, Liaoning Technical University, Huludao, China
Correspondence: [*] Corresponding author. Qian Wang. Tel.: +13324293997; E-mail: [email protected].
Abstract: With the rapid development of big data and continuous optimization of online shopping platforms, personalized recommendation has become a standard feature of recommendation methods. In order to effectively provide personalized recommendations to customers, improve recommendation accuracy, and customer satisfaction, it is necessary to consider customers’ preferences for multiple product attributes when making product recommendations. However, existing recommendation methods require precise calculation of product attribute weights, which is computationally expensive, complex, and often results in unstable weight values. This paper proposes a multi-attribute recommendation method based on consumer decision preference information that overcomes the need for weights and reflects personalized customer preferences. Based on the acquisition of customer product attribute preference sequences, a partial order relation for recommended products is constructed using partial order set theory. Finally, the recommended products are determined through the partial order Hasse diagram, where the top layer elements of the Hasse diagram represent the recommended product set. This method addresses challenges that traditional content-based recommendations cannot overcome. The experiment in this paper uses a dataset of 30,000 records from Beeradvocate beer reviews. The experimental results show that, compared to traditional multi-attribute recommendation methods, this method only requires decision-maker preference information to complete product recommendations, requiring less information and having lower computational costs, resulting in more robust results.
Keywords: Multi-attribute recommendation, partial order set, decision preference, hasse diagram, personalization
DOI: 10.3233/JIFS-231724
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 8741-8754, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]