Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ge, Yilina | Sun, Lipinga; * | Wang, Dib
Affiliations: [a] College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China | [b] College of Petroleum Engineering, Harbin Institute of Petroleum, Harbin, China
Correspondence: [*] Corresponding author. Liping Sun, College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, Heilongjiang, China. E-mail: [email protected].
Abstract: Veneer is the critical raw material for manufacturing man-made board products, therefore the quality of the veneer determines the level of the man-made board. However, defects in the veneer may significantly lower its grade. Currently, identifying veneer defects requires manual inspection and subsequent inpainting using a veneer digging machine. Unfortunately, this method only removes the defects of the veneer but ignore the consistency of its texture. To address this issue, we propose a feasible veneer defect reconstruction method that utilizes a texture-aware-multiscale-GAN architecture. Our method performs texture reconstruction of veneer defects to increase the texture information of the reconstructed image while improving the model efficiency, so that generates natural-looking textures in the reconstructed defect areas. The model is trained by end-to-end updating of four cascades of efficient generators and discriminators. We also employed a loss function based on local binary patterns (LBP) to ensure that the restored images contain sufficient texture information. Finally, region normalization is used in the model to enhance the accuracy of the model. Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) are used to evaluate the effectiveness of image restoration, the results show that PSNR of the method reacheds 35.32 and SSIM reaches 0.971. By minimizing the difference between the generated texture and that of the original image, our model produces high-quality results.
Keywords: Image reconstruction, deep learning, veneer defect, LBP, texture aware multiscale
DOI: 10.3233/JIFS-231692
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 9753-9769, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]