Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Zehaoa | Wang, Shunlia; b; * | Yu, Chunmeia | Qi, Chuangshia | Shen, Xianfenga | Fernandez, Carlosc
Affiliations: [a] School of Information Engineering, Southwest University of Science and Technology, Mianyang, China | [b] School of Electrical Engineering, Sichuan University, Chengdu, China | [c] School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
Correspondence: [*] Corresponding author. Shunli Wang. E-mail: [email protected].
Abstract: The development of a secure battery management system (BMS) for electric vehicles depends heavily on the correct assessment of the online state-of-charge (SOC) of Li-ion batteries. The ternary lithium battery is used as the research object in this paper, and a second-order RC equivalent circuit model is developed to characterize the dynamic operating characteristics of the battery. In order to solve the problem that the adaptive unscented Kalman filter (AUKF) algorithm is easy to fail SOC estimation because the error covariance matrix is not positively definite due to the incomplete accuracy of the equivalent circuit model, a corresponding solution is proposed. Considering the poor real-time battery SOC estimate caused by the battery model’s fixed parameters, therefore we propose the Variable Forgetting Factor Recursive Least Squares (VFFRLS) algorithm for joint estimation of Li-battery SOC and the Singular Value Decomposition-AUKF (SVD-AUKF) algorithm. The SVD-AUKF algorithm can accurately estimate the SOC of the battery when the error covariance is negative. The algorithm can be adaptively adjusted in both the parameter identification and SOC estimation stages, which can effectively solve the problem of poor estimation accuracy caused by fixed parameters. According to experiments, under two separate dynamic operating situations, the joint estimation algorithm’s error is less than 2%, and its stability has also been greatly enhanced. At the same time, when the initial SOC value is set incorrectly, the convergence time of the algorithm proposed in this paper can reach within 2.1 seconds for BBDST and DST conditions, which can be well adapted to complex working conditions.
Keywords: Lithium-ion battery, second-order RC equivalent circuit model, charge state, adaptive unscented Kalman filter algorithm, variable forgetting factor recursive least squares, singular value decomposition, error covariance
DOI: 10.3233/JIFS-231433
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 1, pp. 789-803, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]