Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rose, Bijia; * | Aruna Devi, B.b
Affiliations: [a] Department of Information Technology, Dr. N.G.P Institute of Technology, Coimbatore, Tamilnadu, India | [b] Department of ECE, Dr. N.G.P Institute of Technology, Coimbatore, Tamilnadu, India
Correspondence: [*] Corresponding author. Biji Rose, Assistant Professor, Department of Information Technology, Dr. N.G.P Institute of Technology, Coimbatore, Tamilnadu, India. E-mail: [email protected].
Abstract: From the signal received on a particular frequency band, spectrum sensing (SS) is used in cognitive radio (CR) to assess whether the primary user (PU) is using the spectrum and, consequently, whether the secondary user (SU) can utilize the spectrum. The main issue with SS is determining the presence of the primary signal in a low signal-to-noise ratio (SNR). Compared to conventional technologies, machine learning techniques are more effective and accurate at identifying the qualities of input data. This paper proposes a machine learning (ML) based SS model for CR with effective feature extraction and reduction techniques. The proposed work comprises five phases: noise removal, wavelet transform, feature extraction, dimensionality reduction, and classification. Firstly, noise filtering is done on the received signal to remove the noise present in the input signal using the filters such as moving median filter (MMF), Gaussian filter (GF), and Gabor filter (GBF). After that, the filtered signal is transformed into a wavelet domain using Discrete Wavelet Transform (DWT) algorithm. Then the statistical features such as average absolute value, wavelet energy, variance, standard deviation, and peak value features are extracted from the DWT. Next, the dimensionality reduction (DR) is performed using Linear Discriminant Analysis (LDA). Finally, the classification is performed using the ensemble ML classifiers such as Support Vector Machine (SVM), Naive Bayes (NB), and K-Nearest Neighbour (KNN), which classify whether the PU signal is active or not. Simulations are carried out to analyze the efficiency of the presented models for SS. The results proved that SVM obtains the best performance for SS with higher accuracy and lower SNR.
Keywords: Cognitive radio, spectrum sensing, discrete wavelet transform, machine learning, signal-to-noise ratio
DOI: 10.3233/JIFS-230438
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 10495-10509, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]