Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Wenqiaoa; * | Wang, Ruijiea | Ai, Qishenga | Liu, Qiana | Lu, Shu Xianb
Affiliations: [a] Geophysical Exploration Brigade of Hubei Geological Bureau, Wuhan, Hubei, China | [b] Liaoning Technical University, Xihe District, Fuxin City, Liaoning Province, China
Correspondence: [*] Corresponding author. Wenqiao Li, Geophysical Exploration Brigade of Hubei Geological Bureau, Wuhan 430000, Hubei, China. E-mail: [email protected].
Abstract: The compressive strength and slump of concrete have highly nonlinear functions relative to given components. The importance of predicting these properties for researchers is greatly diagnosed in developing constructional technologies. Such capacities should be progressed to decrease the cost of expensive experiments and enhance the measurements’ accuracy. This study aims to develop a Radial Basis Function Neural Network (RBFNN) to model the hardness features of High-Performance Concrete (HPC) mixtures. In this function, optimizing the predicting process via RBFNN will be aimed to be accurate, as the aim of this research, conducted with metaheuristic approaches of Henry gas solubility optimization (HGSO) and Multiverse Optimizer (MVO). The training phase of models RBHG and RBMV was performed by the dataset of 181 HPC mixtures having fly ash and superplasticizer. Regarding the results of hybrid models, the MVO had more correlation between the predicted and observed compressive strength and slump values than HGSO in the R2 index. The RMSE of RBMV (3.7 mm) was obtained 43.2 percent lower than that of RBHG (5.3 mm) in the appraising slump of HPC samples, while, for compressive strength, RMSE was 3.66 MPa and 5 MPa for RBMV and RBHG respectively. Moreover, to appraise slump flow rates, the R2 correlation rate for RBHG was computed at 96.86 % while 98.25 % for RBMV in the training phase, with a 33.30% difference. Generally, both hybrid models prospered in doing assigned tasks of modeling the hardness properties of HPC samples.
Keywords: Compressive strength, slump flow, multiverse optimization algorithm, concrete hardness, neural network
DOI: 10.3233/JIFS-230005
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 1, pp. 577-591, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]