Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Samy, V.S.a; * | Thenkanidiyoor, Veenab
Affiliations: [a] National Centre for Polar and Ocean Research, Goa, India | [b] National Institute of Technology, Goa, India
Correspondence: [*] Corresponding author. V.S. Samy, National Centre for Polar and Ocean Research, Goa, India. Tel.: +91 9545644044; E-mail: [email protected].
Abstract: Due to the unpredictable nature of the weather and the complexity of atmospheric movement, extreme weather has always been a significant and challenging meteorological concern. Meteorological problems and the complexity of how the atmosphere moves have made it necessary to find a technological solution. Deep learning techniques can automatically learn and train from vast quantities of data to provide enhanced feature expression. This is frequently used in computer vision, natural language processing, and other domains to enhance the performance of numerous real-time problems. The purpose of this research is to propose a deep learning-based approach for effectively predicting extreme weather events such as blizzards. To recognize weather patterns and forecast blizzards, the proposed deep learning-based method primarily employs RNN with LSTM. Real-time datasets from the Polar Regions were used to test the proposed approach’s accuracy, and tests were conducted to compare it to existing weather forecasting models. The accuracy of the model is 49.60% (univariate) and 55.19% (bivariate) using bivariate attributes of wind speed and air pressure based on the calculated RMSE values such as 0.0023 and 0.0021.
Keywords: Weather patterns analytics, machine learning, deep learning, extreme prediction and weather forecasting
DOI: 10.3233/JIFS-224543
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6797-6812, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]