Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tong, Shekun; * | Peng, Jie
Affiliations: College of Information Engineering, Jiaozuo University, Jiaozuo, Henan, P. R. China
Correspondence: [*] Corresponding author. Shekun Tong. E-mail: [email protected].
Abstract: In this work, with the aim of separating the genuine and forgery samples of the signature, we developed a new dual-path architecture using deep neural network and a traditional descriptor for feature extraction toward an automatic offline signature recognition. The proposed approach is an extended version of VGG-16, which is enhanced using our two paths architecture. In the first path, we explore features using a deep convolutional neural network, and in the second path, we discover global features using a traditional heuristic approach. For classical feature extraction, an innovative idea is presented, in which the descriptor is stable for some common changes, such as magnification and epoch, in the signature samples. Our traditional approach extracts global features that are stable with rotation and scaling. The proposed method was analyzed and compared with three well-known databases of CEDAR, UTsig, and GPDS signature images. A dual-patched model architecture is significantly more accurate than the basic model when compared to the basic model. In agreement with the proposed method, the best signature recognition accuracy on the CEDAR database is in the range of 98.04-99.96%, while the best recognition accuracy on the GPDS and UTsig databases is 98.04% and 99.56%, respectively. Furthermore, this technique has been compared with four popular methods such as VGG-S, VGG-M, VGG-16, and LS2Net. The presented approach achieved a recognition rate of 99.96% using a diverse signature database. Experimental results demonstrate that the proposed VGG-16 based signature recognition system is superior over texture-based and deep-learning methods and also outperforms the existing state-of-the-art results in this regard. It is expected that the proposed system will provide fresh acumen to the researchers in developing offline signature verification and recognition systems in other scripts.
Keywords: Signature recognition, offline, deep learning, VGG 16-layer neural network, feature extraction
DOI: 10.3233/JIFS-224326
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 1, pp. 953-964, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]