Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bolourchi, Pouya; * | Ghasemzadeh, Aman
Affiliations: Department of Electrical and Electronic Engineering, Final International University, Beşparmaklar Caddesi, Turkey
Correspondence: [*] Corresponding author. Pouya Bolourchi, Department of Electrical and Electronic Engineering, Final International University, Beşparmaklar Caddesi, No: 6, Çatalköy, Girne, Mersin 10, 99320 Turkey. E-mail: [email protected].
Abstract: In bioinformatics studies, many modeling tasks are characterized by high dimensionality, leading to the widespread use of feature selection techniques to reduce dimensionality. There are a multitude of feature selection techniques that have been proposed in the literature, each relying on a single measurement method to select candidate features. This has an impact on the classification performance. To address this issue, we propose a majority voting method that uses five different feature ranking techniques: entropy score, Pearson’s correlation coefficient, Spearman correlation coefficient, Kendall correlation coefficient, and t-test. By using a majority voting approach, only the features that appear in all five ranking methods are selected. This selection process has three key advantages over traditional techniques. Firstly, it is independent of any particular feature ranking method. Secondly, the feature space dimension is significantly reduced compared to other ranking methods. Finally, the performance is improved as the most discriminatory and informative features are selected via the majority voting process. The performance of the proposed method was evaluated using an SVM, and the results were assessed using accuracy, sensitivity, specificity, and AUC on various biomedical datasets. The results demonstrate the superior effectiveness of the proposed method compared to state-of-the-art methods in the literature.
Keywords: Classification, correlation coefficient, feature selection, feature ranking, gene data, majority
DOI: 10.3233/JIFS-224029
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9863-9877, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]