Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jayashree, P. | Laila, K. | Amuthan, Aara
Affiliations: Department of Computer Technology, MIT campus, Anna University
Correspondence: [*] Corresponding author. P. Jayashree. E-mail: [email protected].
Abstract: The large flux of online products in today’s world makes business reviews a valuable source for consumers for making sound decisions before making online purchases. Reviews are useful for readers in learning more about the product and gauge its quality. Fake reviews and reviewers form the bulk of the review corpus, making review spamming an open research challenge. These spam reviews require detection to nullify their contribution to product recommendations. In the past, researchers and communities have taken spam detection problems as a matter of serious concern. Yet, for all that, there is space for the performance of exploration on large-scale complex datasets. The work contributes towards robust feature selection with derived features that provide more details on malicious reviews and spammers. Ensemble and other standard machine learning techniques are trained and evaluated over optimal feature sets. In addition, the Metapath-based Graph Convolution Network (M-GCN) framework is proposed, which is an implicit knowledge extraction method to automatically capture the complex semantic meaning of reviews from the heterogeneous network. It makes analysis of triplet (users, reviews, and products) relationships in e-commerce sites through examination of Top-n feature sets in a mutually reinforcing manner. The proposed model is demonstrated on Yelp and Amazon benchmark datasets for evaluation of efficacy and it is shown outperforming state-of-the-art techniques with and without graph-utilization, providing an accuracy of 96% in the prediction task.
Keywords: Spam review detection, feature sets derivation, machine learning, Metapath, graph convolution network
DOI: 10.3233/JIFS-223136
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 3005-3023, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]