Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Weize; * | Feng, Yurui
Affiliations: School of Economics and Management, Guangxi Normal University, Guilin, China
Correspondence: [*] Corresponding author. Weize Wang, School of Economics and Management, Guangxi Normal University, Guilin 541004, China. E-mail: [email protected].
Abstract: There are various uncertainties in the multi-criteria group decision making (MCGDM) process, including the definition of the importance of decision information and the assignment of criterion assessment values, etc., which cause decision makers to be unconfident in their decisions. In this paper, an MCGDM approach based on the reliability of decision information is proposed in Fermatean fuzzy (FF) environment, allowing a decision to be made with confidence that the alternative chosen is the best performing alternative under the range of probable circumstances. First, we prove that the FF Yager weighted averaging operator is monotone with respect to the total order and note the inconsistency between the monotonicity of some FF aggregation operators and their application in MCGDM. Second, we extend the divergence measure of FFS to order σ for calculating the variance of decision information and accordingly develop an exponential FF entropy measure to measure the uncertainty of decision information. Then, the reliability of decision information is defined, which accounts for the degree of variance of decision information across criteria from the criterion dimension and the uncertainty of the decision information from the alternative dimension. Following that, an integrated MCGDM framework is completed. Finally, the applications to a numerical example and comparisons with previous approaches are conducted to illustrate the validity of the established approach.
Keywords: Multi-criteria group decision making, Fermatean fuzzy set, Divergence measure, Entropy measure, Supplier selection
DOI: 10.3233/JIFS-223014
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 10337-10356, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]