Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gu, Minga | Li, Donga; * | Gong, Lanlana | Liu, Jiaa | Liu, Shulinb
Affiliations: [a] School of Petroleum Engineering, Changzhou University, Changzhou, P.R. China | [b] School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, P.R. China
Correspondence: [*] Corresponding author. Dong Li, School of Petroleum Engineering, Changzhou University, Changzhou, P.R. China. Tel.: +86 519 86330800; Fax: +86 519 86330800; E-mail: [email protected].
Abstract: The traditional negative selection algorithm with a randomly generated hypersphere detector is unable to satisfy the development needs of continuous learning due to the inherent defects of the detector. This paper proposes a novel negative selection algorithm for hyper-rectangle detectors that overcomes the shortcomings of randomly generated hyper-sphere detectors and lays the foundation for a negative selection algorithm with continuous learning capability. It uses self-sample clusters of equal-sized hypercubes instead of self-samples for training. The hyper-rectangle detectors are generated by cutting the nonself-space along the boundary of the self-sample clusters. The state space is covered without overlapping each other by self-sample clusters and detectors. The anomaly detection performance of the proposed method was demonstrated using Iris data, vowel recognition data (Vowel), and Wisconsin Breast Cancer (BCW) data. The experimental results show that the proposed method outperforms other artificial immune algorithms and clustering algorithms under the same parameter conditions.
Keywords: Artificial immune algorithm, negative selection algorithm, anomaly detection, hyper-rectangle detectors, artificial intelligence
DOI: 10.3233/JIFS-222994
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 1, pp. 719-730, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]