Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bekhouche, Maamar; * | Haouassi, Hichem | Bakhouche, Abdelaali | Rahab, Hichem | Mahdaoui, Rafik
Affiliations: ICOSI Laboratory, Department of Mathematics and Computer Science, Abbes Laghrour University, Houria, Khenchela, Algeria
Correspondence: [*] Corresponding author. Maamar Bekhouche. E-mail: [email protected].
Abstract: Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunting Strategy (CHS), a novel swarm-based meta-heuristic that simulates the crocodiles’ hunting behaviour, has demonstrated excellent optimization results. Hence, in this work, two FS algorithms, i.e., Binary CHS (BCHS) and Improved BCHS (IBCHS) based on original CHS were applied for FS in the SA field. In IBCHS, the opposition-based learning technique is applied in the initialization and displacement phases to enhance the search space exploration ability of the IBCHS. The two proposed approaches were evaluated using six well-known corpora in the SA area (Semeval-2016, Semeval-2017, Sanders, Stanford, PMD, and MRD). The obtained result showed that IBCHS outperformed BCHS regarding search capability and convergence speed. The comparison results of IBCHS to several recent state-of-the-art approaches show that IBCHS surpassed other approaches in almost all used corpora. The comprehensive results reveal that the use of OBL in BCHS greatly impacts the performance of BCHS by enhancing the diversity of the population and the exploitation ability, which improves the convergence of the IBCHS.
Keywords: Sentiment analysis, Opinion mining, feature selection, swarm-based intelligence, crocodiles hunting strategy optimization algorithm, Opposition-based learning
DOI: 10.3233/JIFS-222192
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 1, pp. 369-389, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]