Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Nizarudeen, Shanua; * | Shunmugavel, Ganesh R.b
Affiliations: [a] Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil, Tamilnadu, India | [b] Department of Electronics and Communication Engineering, R.M.K. Engineering College, Chennai, Tamilnadu, India
Correspondence: [*] Corresponding author. Shanu Nizarudeen, Research Scholar, Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil, Tamilnadu, India. E-mail: [email protected]; Ganesh R. Shunmugavel (E-mail: [email protected]).
Abstract: Intracerebral haemorrhage (ICH) is defined as bleeding occurs in the brain and causes vascular abnormality, tumor, venous Infarction, therapeutic anticoagulation, trauma property, and cerebral aneurysm. It is a dangerous disease and increases high mortality rate within the age of 15 to 24. It may be cured by finding what type of ICH is affected in the brain within short period with more accuracy. The previous method did not provide adequate accuracy and increase the computational time. Therefore, in this manuscript Detection and Categorization of Acute Intracranial Hemorrhage (ICH) subtypes using a Multi-Layer DenseNet-ResNet Architecture with Improved Random Forest Classifier (IRF) is proposed to detect the subtypes of ICH with high accuracy, less computational time with maximal speed. Here, the brain CT images are collected from Physionet repository publicly dataset. Then the images are pre-processed to eliminate the noises. After that, the image features are extracted by using multi layer Densely Connected Convolutional Network (DenseNet) combined with Residual Network (ResNet) architecture with multiple Convolutional layers. The sub types of ICH (Epidural Hemorrhage (EDH), Subarachnoid Hemorrhage (SAH), Intracerebral Hemorrhage (ICH), Subdural Hemorrhage (SDH), Intraventricular Hemorrhage (IVH), normal is classified by using Improved Random Forest (IRF) Classifier with high accuracy. The simulation is activated in MATLAB platform. The proposed Multilayer-DenseNet-ResNet-IRF approach attains higher accuracy 23.44%, 31.93%, 42.83%, 41.9% compared with existing approaches, like Detection with classification of intracranial haemorrhage on CT images utilizing new deep-learning algorithm (ICH-DC-CNN), Detection with classification of intracranial haemorrhage on CT images utilizing new deep-learning algorithm (ICH-DC-CNN-ResNet-50), Shallow 3D CNN for detecting acute brain hemorrhage from medical imaging sensors (ICH-DC-S-3D-CNN), Convolutional neural network: a review of models, methods and applications to object detection (ICH-DC-CNN-AlexNet) respectively.
Keywords: Acute Intracranial Hemorrhage (ICH), Computerized Tomography (CT), Residual Network (ResNet), Densely Connected Convolutional Networks (DenseNet), Extreme Gradient Boosting (XGBoost) Classifier
DOI: 10.3233/JIFS-221177
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 2, pp. 2351-2366, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]