Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sharmila Devi, J.a; * | Balasubramanian, P.b
Affiliations: [a] Department of Instrumentation and Control Engineering, A.V.C College of Engineering, Mayiladuthurai, Tamilnadu, India | [b] Department of Mechanical Engineering, A.V.C College of Engineering, Mayiladuthurai, Tamilnadu, India
Correspondence: [*] Correspondingauthor. J. Sharmila Devi, Department of Instrumentation and Control Engineering, A.V.C College of Engineering, Mayiladuthurai, Tamilnadu, India. E-mail: [email protected].
Abstract: Milling seems to be the most extensively utilized production technology in modern manufacturing industries, and it plays a significant role. Chatter is a type of disturbance in the form of vibration that has a negative impact on machining operation. Chatter recognition utilizing sensor outputs is a hot topic in academia. Although some progress has indeed been documented utilizing various featurization techniques and ml techniques, conventional approaches have a number of limitations, including manual preparation and a huge dataset need. Although, these are widely being used to evaluate milling operations in terms of production efficiency & work piece surface quality,.they are not suited for real applications due to their computing duration and require large data for training process. Therefore, in this study, three well-performing deep learning approaches such as LSTM, DTW, and Bi-LSTM are used to provide an effective way for monitoring and managing chatter in the milling processes with the Duplex 2205 material. Here, some of the parameters like acceleration is measured while the milling operation is taking place, and the measured acceleration value is processed using selected three DL techniques for identifying the presence of chatter and are tested to see which one performs the best. The Bi-LSTM outperformed other approaches in detecting chatter present, according to the data.
Keywords: Bi-directional long short term memory, long short term memory, dynamic time warping, deep learning, acceleration, milling chatter detection
DOI: 10.3233/JIFS-221091
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 3647-3666, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]