Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Jing; *
Affiliations: School of Humanities and Arts, Hunan International Economics University, Changsha, China
Correspondence: [*] Corresponding author. Jing Wang, School of Humanities and Arts, Hunan International Economics University, Changsha, China. E-mail: [email protected].
Abstract: Before neural networks, image style transfer procedures had a common idea: analyze images with a certain style, build a mathematical or statistical model for the style, and then change the image to be transferred, so that it better fits the established model. In this paper, k-means and semantic closed natural matting algorithm is combined for image segmentation, the style and content in the image are extracted based on neural network, and the resulting image is synthesized by image reconstruction technology to realize the migration of national costume styles. Due to the serious artifacts of the output image, an improved image style transfer algorithm is adopted to constrain the transformation from the input image to the output image in the local affine transformation of the color space, and this constraint is expressed as a completely differentiable parameter term, image distortion is suppressed effectively. In the process of real photo style transfer, there is also space inconsistency. Smoothing is done to ensure that the space style is consistent after style processing, it greatly speeds up the operation speed. On NVIDIA GTX1080TI graphics card, algorithm is tested with 256×256 resolution images. It includes three indicators of average running time, memory usage and the number of styles generated by a single model, which are 0.06 s, 136.06 MB and 1 respectively. These indicators can reflect the efficiency and flexibility of the algorithm.
Keywords: Garment feature extraction, deep learning, closed form natural image matting algorithm, K-means, image segmentation, image style transfer
DOI: 10.3233/JIFS-220761
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 3973-3986, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]