Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Gallardo-García, Rafaela; * | Beltrán-Martínez, Beatriza | Hernández-Gracidas, Carlosb | Vilariño-Ayala, Darnesa
Affiliations: [a] Language and Knowledge Engineering Laboratory, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico | [b] Faculty of Physical and Mathematical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Correspondence: [*] Corresponding author. Rafael Gallardo García, Language and Knowledge Engineering Laboratory, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico. E-mail: [email protected].
Abstract: Current State-of-the-Art image captioning systems that can read and integrate read text into the generated descriptions need high processing power and memory usage, which limits the sustainability and usability of the models (as they require expensive and very specialized hardware). The present work introduces two alternative versions (L-M4C and L-CNMT) of top architectures (on the TextCaps challenge), which were mainly adapted to achieve near-State-of-The-Art performance while being memory-lighter when compared to the original architectures, this is mainly achieved by using distilled or smaller pre-trained models on the text-and-OCR embedding modules. On the one hand, a distilled version of BERT was used in order to reduce the size of the text-embedding module (the distilled model has 59% fewer parameters), on the other hand, the OCR context processor on both architectures was replaced by Global Vectors (GloVe), instead of using FastText pre-trained vectors, this can reduce the memory used by the OCR-embedding module up to a 94% . Two of the three models presented in this work surpassed the baseline (M4C-Captioner) of the challenge on the evaluation and test sets, also, our best lighter architecture reached a CIDEr score of 88.24 on the test set, which is 7.25 points above the baseline model.
Keywords: M4C-Captioner, MMF, multimodal transformers, reading comprehension, TextCaps challenge
DOI: 10.3233/JIFS-219230
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4399-4410, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]