Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Apinaya Prethi, K.N.a; * | Sangeetha, M.b
Affiliations: [a] Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore, India | [b] Department of Information Technology, Coimbatore Institute of Technology, Coimbatore, India
Correspondence: [*] Corresponding author. K.N. Apinaya Prethi, Assistant Professor, Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore, India. E-mail: [email protected].
Abstract: Network resources and traffic priorities can be utilized to distribute requested tasks across edge nodes at the edge layer. However, due to the variety of tasks, the edge nodes have an impact on data accessibility. Resource management approaches based on Virtual Machine (VM) migration, job prioritization, and other methods were used to overcome this problem. A Minimized Upgrading Batch VM Scheduling (MSBP) has recently been developed, which reduces the number of batches required to complete a system-scale upgrade and assigns bandwidth to VM migration matrices. However, due to poor resource sharing caused by suboptimal VM utilization, the MSBP was unable to effectively ensure the global best solutions. In order to distribute resources and schedule tasks optimally during VM migration, this paper proposes the MSBP with Multi-objective Optimization of Resource Allocation (MORA) method. The major goal of this proposed methodology is to take into account different objectives and solve the Pareto-front problem to enhance lifetime of the fog-edge network. First, it formulates an NP-hard challenge for MSBP by taking into account a variety of factors such as network sustainability, path contention, network delay, and cost-efficiency. The Multi-objective Krill Herd optimization (MoKH) algorithm is then used to address the NP-hard issue using the Pareto optimality rule and produce the best solution. First, it introduces an NP-hard challenge for MSBP by accounting in network sustainability, path contention, network latency, and cost-efficiency. The Pareto optimality rule is then implemented to overcome the NP-hard problem and provide the optimum solution employing the Multi-objective Krill Herd optimization (MoKH) algorithm. This increases network lifetime and improves resource allocation cost efficiency. Finally, the simulation results show that the MSBP-MORA distributes resources more efficiently and hence increases network lifetime when compared to other traditional algorithms.
Keywords: VM migration, MSBP, resource allocation, pareto-front issue, multi-objective Krill herd optimization algorithm, NP-hard challenge
DOI: 10.3233/JIFS-213520
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 5, pp. 5985-5995, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]