Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Sijiaa | Guo, Zixuea; b; *
Affiliations: [a] School of Management, Hebei University, Baoding, Hebei, China | [b] Center for Common Prosperity Research, Hebei University, Baoding, Hebei, China
Correspondence: [*] Corresponding author. Zixue Guo, School of Management, Hebei University, Baoding, Hebei 071002, China. E-mail: [email protected].
Abstract: In order to solve the problem of multi-attribute decision-making with unknown weights under probabilistic hesitant fuzzy information, considering the shortcomings of the existing probabilistic hesitant fuzzy distance measure, such as weak distinguishing ability, a probabilistic hesitant fuzzy multi-attribute decision-making method based on improved distance measures is proposed. Firstly, the hesitancy degree of probabilistic hesitant fuzzy element and the improved difference measure of probabilistic hesitant fuzzy element are defined, and an improved probabilistic hesitant fuzzy distance measure based on hesitancy degree, incompleteness degree and improved difference measure is proposed. Secondly, based on the improved distance measure, a mathematical programming model with the goal of minimizing the relative approach degree is con-structed to determine the attribute weights of evaluation indexes in multi-attribute decision making problems. Using it as a base, a new probabilistic hesitant fuzzy multi-attribute decision-making method is proposed by combining the improved probabilistic hesitant fuzzy distance measure with the compromise ratio method. Finally, the proposed method is applied to the problem of green supplier selection, and the feasibility and effectiveness of the proposed method are verified by case analysis and comparison with other methods.
Keywords: Probabilistic hesitant fuzzy set, multi-attribute decision-making, distance measure
DOI: 10.3233/JIFS-213427
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 5, pp. 5953-5964, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]