Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Susmi, S. Jacophine; *
Affiliations: University College of Engineering Tindivanam
Correspondence: [*] Corresponding author. S. Jacophine Susmi, Assistant Professor, University College of Engineering Tindivanam. E-mail: [email protected].
Abstract: Gene expression profiles are sequences of numbers, and the need to analyze them has now increased significantly. Gene expression data contain a large number of genes and models used for cancer classification. As the wealth of these data being produced, new prediction, classification and clustering techniques are applied to the analysis of the data. Although there are a number of proposed methods with good results, there is still limited diagnostics and a lot of problems still to be solved. To solve the difficulty, in this paper, an efficient gene expression data classification is proposed. To predict the cancer class of patients from the gene expression profile, this paper presents a novel classification framework in the manner of three steps namely, Pre-processing, feature selection and classification. In pre-processing, missing value is filled and redundant data are removed. To attain the enhanced classification outcomes, the important features are selected from the database with the help of Adaptive Salp Swarm Optimization (ASSO) algorithm. Then, the selected features are given to the multi kernel SVM (MKSVM) to classify the gene expression data namely, BRCA, KIRC, COAD, LUAD and PRAD. The performance of proposed methodology is analyzed in terms of different metrics namely, accuracy, sensitivity and specificity. The performance of proposed methodology is 4.5% better than existing method in terms of accuracy.
Keywords: Adaptive salp swarm optimization, gene expression data, multi kernel SVM, feature selection
DOI: 10.3233/JIFS-212733
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 6209-6220, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]