Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Muthunagai, S.U.; * | Anitha, R.
Affiliations: Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, India
Correspondence: [*] Corresponding author. S.U. Muthunagai, Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, India, 602117. E-mail: [email protected].
Abstract: As a result of the advancements in Industry 4.0, the amount of data collected within industries are continuously expanding to achieve an innovative environment within the industry by maximizing asset usage. Meanwhile, the redundancy rate is increasing in cloud storage, which has an impact on data storage and analysis. To lower the rate of redundancy, the proposed system comprises a Time series-based deduplication technique. In the Time series-based deduplication technique, the Adaptive Multi-Pattern Boyer Moore Horspool (AM-BMH) algorithm, and Merkle tree were used to produce time-series data. Another significant challenge is that the geographically distributed cloud system has encountered that the data placement methodology with high-priced transportation costs for data transmission. To overcome this issue, an optimal data placement strategy using Modified Distribution is proposed. Thus the proposed Time Series-based Deduplication and Optimal Data Placement Strategy (TDOPS) is found to be effective when compared with the existing system. The various parameters like space reduction, efficient retrieval, data transportation costs, and data transmission time are taken into the account in the cloud environment for an evaluation. The proposed scheme saves 98 percent of storage space, 55 percent computation overhead, and improves 60% of cloud storage efficacy.
Keywords: Data placement, deduplication, modified distribution, Merkle tree, time series analysis
DOI: 10.3233/JIFS-212568
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 1, pp. 1583-1597, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]