Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Fan, Jianping | Zhou, Wei | Wu, Meiqin; *
Affiliations: School of Economics and Management, Shanxi University, Taiyuan China
Correspondence: [*] Corresponding author. Meiqin Wu, School of Economics and Management, Shanxi University, Taiyuan, China. E-mail: [email protected].
Abstract: Handing uncertain information is one of the research focuses currently. For the sake of great ability of handing uncertain information, Dempster-Shafer evidence theory (D-S theory) has been widely used in various fields of uncertain information processing. However, when highly contradictory evidence appears, the results of the classical Dempster combination rules (DCR) can be counterintuitive. Aiming at this defect, by considering the relationship between the evidence and its own characteristics, the proposed method is a new method of conflicting evidence management based on non-extensive entropy and Lance distance in uncertain scenarios. Firstly, the Lance distance function is used to measure the degree of discrepancy and conflict between evidences, and the credibility of evidence is expressed by matrix. Introducing non-extensive entropy to measure the amount of information about evidence and express the uncertainty of evidence. Secondly, the discount coefficient of the final fusion evidence is measured by considering the credibility and uncertainty of the evidence, and the original evidence is modified by the discount coefficient. Then, the final result is obtained by evidence fusion with DCR. Finally, two numerical examples are provided to illustrate the efficiency of the proposed method, and the utility of our work is demonstrated through an application of the active lane change to avoid obstacles to the autonomous driving of new energy vehicles. The proposed method has a better identification accuracy, reaching 0.9811.
Keywords: Dempster-Shafer evidence theory, conflicting evidences, information fusion, Lance distance, non-extensive entropy
DOI: 10.3233/JIFS-212489
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 6117-6129, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]