Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kalimuthu, Raj Kumar | Thomas, Brindha
Affiliations: Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education, TamilNadu, India
Correspondence: [*] Corresponding author. Raj Kumar Kalimuthu, Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education, TamilNadu, India. E-mail: [email protected].
Abstract: In today’s world, cloud computing plays a significant role in the development of an effective computing paradigm that adds more benefits to the modern Internet of Things (IoT) frameworks. However, cloud resources are considered to be dynamic and the demands necessitated for resource allocation for a certain task are different. These diverse factors may cause load and power imbalance which also affect the resource utilization and task scheduling in the cloud-based IoT environment. Recently, a bio-inspired algorithm can work effectually to solve task scheduling problems in the cloud-based IoT system. Therefore, this work focuses on efficient task scheduling and resource allocation through a novel Hybrid Bio-Inspired algorithm with the hybridized of Improvised Particle Swarm Optimization and Ant Colony Optimization. The vital objective of hybridizing these two approaches is to determine the nearest multiple sources to attain discrete and continuous solutions. Here, the task has been allocated to the virtual machine through a particle swarm and continuous resource management can be carried out by an ant colony. The performance of the proposed approach has been evaluated using the CloudSim simulator. The simulation results manifest that the proposed Hybridized algorithm efficiently scheduling the task in the cloud-based IoT environment with a lesser average response time of 2.18 sec and average waiting time of 3.6 sec as compared with existing state-of-the-art algorithms.
Keywords: Metaheuristic algorithm, Internet of Things, cloud computing, resource optimization, scheduling algorithms
DOI: 10.3233/JIFS-212370
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 4051-4063, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]