Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yihong, Li | Yunpeng, Wang; * | Tao, Li | Xiaolong, Lan | Han, Song
Affiliations: School of Cyber Science and Engineering, Sichuan University, Chengdu, China
Correspondence: [*] Corresponding author. Wang Yunpeng, School of Cyber Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China. E-mail: [email protected].
Abstract: DBSCAN (density-based spatial clustering of applications with noise) is one of the most widely used density-based clustering algorithms, which can find arbitrary shapes of clusters, determine the number of clusters, and identify noise samples automatically. However, the performance of DBSCAN is significantly limited as it is quite sensitive to the parameters of eps and MinPts. Eps represents the eps-neighborhood and MinPts stands for a minimum number of points. Additionally, a dataset with large variations in densities will probably trap the DBSCAN because its parameters are fixed. In order to overcome these limitations, we propose a new density-clustering algorithm called GNN-DBSCAN which uses an adaptive Grid to divide the dataset and defines local core samples by using the Nearest Neighbor. With the help of grid, the dataset space will be divided into a finite number of cells. After that, the nearest neighbor lying in every filled cell and adjacent filled cells are defined as the local core samples. Then, GNN-DBSCAN obtains global core samples by enhancing and screening local core samples. In this way, our algorithm can identify higher-quality core samples than DBSCAN. Lastly, give these global core samples and use dynamic radius based on k-nearest neighbors to cluster the datasets. Dynamic radius can overcome the problems of DBSCAN caused by its fixed parameter eps. Therefore, our method can perform better on dataset with large variations in densities. Experiments on synthetic and real-world datasets were conducted. The results indicate that the average Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI) and V-measure of our proposed algorithm outperform the existing algorithm DBSCAN, DPC, ADBSCAN, and HDBSCAN.
Keywords: Density-based clustering algorithm, Grid, The nearest neighbor, DBSCAN
DOI: 10.3233/JIFS-211922
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7589-7601, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]