Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhou, Weia | Jiang, Xinga; * | Guo, Binglib | Meng, Lingyub
Affiliations: [a] Guilin University of Electronic Technology, Guilin, China | [b] Beijing University of Posts and Telecommunications, Beijing, China
Correspondence: [*] Corresponding author. Xing Jiang, Guilin University of Electronic Technology, Guilin, China. E-mail: [email protected].
Abstract: Currently, Quality-of-Service (QoS)-aware routing is one of the crucial challenges in Software Defined Network (SDN). The QoS performances, e.g. latency, packet loss ratio and throughput, must be optimized to improve the performance of network. Traditional static routing algorithms based on Open Shortest Path First (OSPF) could not adapt to traffic fluctuation, which may cause severe network congestion and service degradation. Central intelligence of SDN controller and recent breakthroughs of Deep Reinforcement Learning (DRL) pose a promising solution to tackle this challenge. Thus, we propose an on-policy DRL mechanism, namely the PPO-based (Proximal Policy Optimization) QoS-aware Routing Optimization Mechanism (PQROM), to achieve a general and re-customizable routing optimization. PQROM can dynamically update the routing calculation by adjusting the reward function according to different optimization objectives, and it is independent of any specific network pattern. Additionally, as a black-box one-step optimization, PQROM is qualified for both continuous and discrete action space with high-dimensional input and output. The OMNeT ++ simulation experiment results show that PQROM not only has good convergence, but also has better stability compared with OSPF, less training time and simpler hyper-parameters adjustment than Deep Deterministic Policy Gradient (DDPG) and less hardware consumption than Asynchronous Advantage Actor-Critic (A3C).
Keywords: PQROM, SDN, QoS-aware routing
DOI: 10.3233/JIFS-211787
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 3605-3614, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]