Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Affiliations: Thu Dau Mot University, Binh Duong, Vietnam
Correspondence: [*] Corresponding author. Tham Vo, Thu Dau Mot University, Binh Duong, Vietnam. E-mail: [email protected].
Abstract: Recently, many pre-trained text embedding models have been applied to effectively extract latent features from texts and achieve remarkable performance in various downstream tasks of sentiment analysis domain. However, these pre-trained text embedding models also encounter limitations related to the capability preserving the syntactical structure as well as the global long-range dependent relationships of words. Thus, they might fail to recognize the relevant syntactical features of words as valuable evidences for analyzing sentiment aspects. To overcome these limitations, we proposed a novel deep semantic contextual embedding technique for sentiment analysis, called as: SE4SA. Our proposed SE4SA is a multi-level text embedding model which enables to jointly exploit the long-range syntactical and sequential representations of texts. Then, these achieved rich semantic textual representations can support to have a better understanding on the sentiment aspects of the given text corpus, thereby resulting the better performance on sentiment analysis task. Extensive experiments in several benchmark datasets demonstrate the effectiveness or our proposed SE4SA model in comparing with recent state-of-the-art model.
Keywords: Sentiment analysis, GCN, BERT, attention, masked language model
DOI: 10.3233/JIFS-211535
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7527-7546, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]