Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Song, Xudong | Zhu, Dajie; * | Liang, Pan | An, Lu
Affiliations: Software Institute, Dalian Jiaotong University, Dalian, China
Correspondence: [*] Corresponding author. Dajie Zhu, Software Institute, Dalian Jiaotong University, Dalian, China. E-mail: [email protected].
Abstract: Although the existing transfer learning method based on deep learning can realize bearing fault diagnosis under variable load working conditions, it is difficult to obtain bearing fault data and the training data of fault diagnosis model is insufficient£¬which leads to the low accuracy and generalization ability of fault diagnosis model, A fault diagnosis method based on improved elastic net transfer learning under variable load working conditions is proposed. The improved elastic net transfer learning is used to suppress the over fitting and improve the training efficiency of the model, and the long short-term memory network is introduced to train the fault diagnosis model, then a small amount of target domain data is used to fine tune the model parameters. Finally, the fault diagnosis model under variable load working conditions based on improved elastic net transfer learning is constructed. Finally, through model experiments and comparison with conventional deep learning fault diagnosis models such as long short-term memory network (LSTM), gated recurrent unit (GRU) and Bi-LSTM, it shows that the proposed method has higher accuracy and better generalization ability, which verifies the effectiveness of the method.
Keywords: Elastic net, fault diagnosis, LSTM, transfer learning
DOI: 10.3233/JIFS-210503
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 12361-12369, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]