Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ahkouk, Karam; * | Machkour, Mustapha | Majhadi, Khadija | Mama, Rachid
Affiliations: Faculty of Sciences, Ibn Zohr University, Souss-Massa-Daraa, Morocco
Correspondence: [*] Corresponding author. Karam Ahkouk. E-mail: [email protected].
Abstract: In the last decade, many intelligent interfaces and layers have been suggested to allow the use of relational databases and extraction of the content using only the natural language. However most of them struggle when exposed to new databases. In this article, we present SQLSketch, a sketch-based network for generating SQL queries to address the problem of automatically translate Natural Languages questions to SQL using the related databases schemas. We argue that the previous models that use full or partial sequence-to-sequence structure in the decoding phase can, in fact, have counter-effect on the generation operation and came up with more loss of the context or the meaning of the user question. In this regard, we use a full sketch-based structure that decouples the generation process into many small prediction modules. The SQLSketch is evaluated against GreatSQL, a new cross-domain, large-scale and balanced dataset for the Natural Language to SQL translation task. For a long-term aim of making better models and contributing in adding more improvements to the semantic parsing tasks, we propose the GreatSQL dataset as the first balanced cross-domain corpus that includes 45,969 pairs of natural language questions and their corresponding SQL queries in addition to simplified and well structured ground-truth annotations. We establish results for SQLSketch using GreatSQL dataset and compare the performance against two popular types of models that represent the sequential and partial-sketch based approaches. Experimental result shows that SQLSketch outperforms the baseline models by 13% in exact matching accuracy and achieve a score of 23.9% to be the new state-of-the-art model on GreatSQL.
Keywords: Natural language processing, text to SQL translation, database interfaces, natural language translation, machine translation
DOI: 10.3233/JIFS-210359
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 12253-12263, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]