Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sheng, JinFang | Zuo, Huaiyu | Wang, Bin; * | Li, Qiong
Affiliations: School of Computer Science and Engineering, Central South University, Hunan Province, China
Correspondence: [*] Corresponding author. Bin Wang, School of Computer Science and Engineering, Central South University, Hunan Province, China. E-mail: [email protected].
Abstract: In a complex network system, the structure of the network is an extremely important element for the analysis of the system, and the study of community detection algorithms is key to exploring the structure of the complex network. Traditional community detection algorithms would represent the network using an adjacency matrix based on observations, which may contain redundant information or noise that interferes with the detection results. In this paper, we propose a community detection algorithm based on density clustering. In order to improve the performance of density clustering, we consider an algorithmic framework for learning the continuous representation of network nodes in a low-dimensional space. The network structure is effectively preserved through network embedding, and density clustering is applied in the embedded low-dimensional space to compute the similarity of nodes in the network, which in turn reveals the implied structure in a given network. Experiments show that the algorithm has superior performance compared to other advanced community detection algorithms for real-world networks in multiple domains as well as synthetic networks, especially when the network data chaos is high.
Keywords: Complex network, community detection, network embedding, density clustering
DOI: 10.3233/JIFS-202961
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6273-6284, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]