Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lei, Fana; * | Wei, Guiwua; b | Chen, Xudongc
Affiliations: [a] School of Mathematical Sciences, Sichuan Normal University, Chengdu, P.R. China | [b] School of Business, Sichuan Normal University, Chengdu, P.R. China | [c] School of Accounting, Southwestern University of Finance and Economics, Chengdu, P.R. China
Correspondence: [*] Corresponding author. Fan Lei, School of Mathematical Sciences, Sichuan Normal University, Chengdu, 610101, P.R. China. E-mail: [email protected].
Abstract: Probabilistic double hierarchy linguistic term set (PDHLTS) can not only express the complex linguistic information that the probabilistic linguistic term set (PLTS) cannot express, but also reflect the frequency or importance of linguistic term set (LTS)that cannot be reflected by the double hierarchy linguistic term set (DHLTS). It is an effective tool to deal with multiple attribute group decision making (MAGDM) problems. Therefore, in this paper, we propose several aggregation operators which can aggregate PDHLTS information and apply them to MAGDM problems. Firstly, the basic notion of PDHLTS is reviewed, and the distance formula and algorithm of PDHLTS are defined; then, extant weighted averaging (WA) operator, weighted geometric(WG) operator and power weighted averaging (PWA) operator, power weighted geometric(PWG) operator to PDHLTS, and establish probability double hierarchy linguistic weighted averaging (PDHLWA) operator, probability double hierarchy linguistic weighted geometric (PDHLWG) operator, probability double hierarchy linguistic power weighted averaging (PDHLPWA) operator, probability double hierarchy linguistic power weighted geometric (PDHLPWG) operator; in addition, The idempotency, boundedness and monotonicity of these aggregation operators are studied; what’s more, those aggregation operators are proposed to establish the enterprise credit self-evaluation model; Finally, compared with the available probabilistic double hierarchy linguistic MAGDM methods, the defined model is proved to be scientific and effective.
Keywords: Multiple attribute group decision making (MAGDM), probabilistic double hierarchy term set (PDHLTS), aggregation operators, enterprise credit self-evaluation model
DOI: 10.3233/JIFS-202922
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 11809-11828, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]