Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xuan, Cho Doa; b; * | Duong, Duca | Dau, Hoang Xuana
Affiliations: [a] Faculty of Information Technology, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam | [b] Department of Information Assurance, FPT University, Hanoi, Vietnam
Correspondence: [*] Corresponding author. Cho Do Xuan, E-mail: [email protected].
Abstract: Advanced Persistent Threat (APT) is a dangerous network attack method that is widely used by attackers nowadays. During the APT attack process, attackers often use advanced techniques and tools, thus, causing many difficulties for information security systems. In fact, to detect the APT attacks, intrusion detection systems cannot rely on one technique or method but often combine multiple techniques and methods. In addition, the approach for APT attack detection using behavior analysis and evaluation techniques is facing many difficulties due to the lack of characteristic data of attack campaigns. For the above reasons, in this paper, we propose a method for APT attack detection based on a multi-layer analysis. The multi-layer analysis technique in our proposal computes and analyzes various events in Network Traffic to detect and synthesize abnormal signs and behaviors in order to make conclusions about the existence of APT in the system. Specifically, in our proposal, we will use serial 3 main layers for the APT attack detection process including i) Detecting APT attacks based on analyzing abnormal connection; ii) Detecting APT attacks based on analyzing and evaluating Suricata log; iii) Detecting APT attacks based on analyzing behavior profiles that are compiled from layers (i) and (ii). To achieve these goals, the multi-layer analysis technique for APT attack detection will perform 2 main tasks: i) Analyzing and evaluating components of Network Traffic based on abnormal signs and behaviors. ii) building and classifying behavior profile based on each component of network traffic. In the experimental section, we will compare and evaluate the effectiveness of the APT attack detection process of each layer in the multi-layer analysis model using machine learning. Experimental results have shown that the APT attack detection method based on analyzing behavior profile has yielded better results than individual detection methods on all metrics. The research results shown in the paper not only demonstrate the effectiveness of the multilayer analysis model for APT attack detection but also provide a novel approach for detecting several other cyber-attack techniques.
Keywords: Advanced persistent threat, APT attack detection, network traffic, multi-layer detection, abnormal behavior, machine learning
DOI: 10.3233/JIFS-202465
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 11311-11329, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]