Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: He, Weiminga | Wu, Youb | Xiao, Jinga; * | Cao, Yanga
Affiliations: [a] School of Computer Science, South China Normal University, Guangzhou, China | [b] School of Mathematics and Statistics, Hunan Normal University, Changsha, China
Correspondence: [*] Corresponding author. Jing Xiao, School of Computer Science, South China Normal University, 510631, Guangzhou China. E-mail: [email protected].
Abstract: Feature pyramids are commonly applied to solve the scale variation problem for object detection. One of the most representative works of feature pyramid is Feature Pyramid Network (FPN), which is simple and efficient. However, the fully power of multi-scale features might not be completely exploited in FPN due to its design defects. In this paper, we first analyze the structure problems of FPN which prevent the multi-scale feature from being fully exploited, then propose a new feature pyramid structure named Mixed Group FPN (MGFPN), to mitigate these design defects of FPN. Concretely, MGFPN strengthens the feature utilization by two modules named Mixed Group Convolution(MGConv) and Contextual Attention(CA). MGConv reduces the spatial information loss of FPN in feature generation stage. And CA narrows the semantic gaps between features of different receptive field before lateral summation. By replacing FPN with MGFPN in FCOS, our method can improve the performance of detectors in many major backbones by 0.7 to 1.2 Average Precision(AP) on MS-COCO benchmark without adding too much parameters and it is easy to be extended to other FPN-based models. The proposed MGFPN can serve as a simple and strong alternative for many other FPN based models.
Keywords: Object Detection, Feature Pyramids, FPN, Mixed Group Convolution, Contextual Attention
DOI: 10.3233/JIFS-202372
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 11171-11181, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]