Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ayyub, Kashifa; * | Iqbal, Saqibb | Nisar, Muhammad Wasifa | Ahmad, Saima Gulzara | Munir, Ehsan Ullaha
Affiliations: [a] Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, Pakistan | [b] College of Engineering, Al Ain University, Al Ain, UAE
Correspondence: [*] Corresponding author. Kashif Ayyub, Department of Computer Science, COMSATS University Islamabad, Wah Campus, GT Road, Wah Cantt, Punjab, Pakistan. E-mail: [email protected].
Abstract: Sentiment analysis is the field that analyzes sentiments, and opinions of people about entities such as products, businesses, and events. As opinions influence the people’s behaviors, it has numerous applications in real life such as marketing, politics, social media etc. Stance detection is the sub-field of sentiment analysis. The stance classification aims to automatically identify from the source text, whether the source is in favor, neutral, or opposed to the target. This research study proposed a framework to explore the performance of the conventional (NB, DT, SVM), ensemble learning (RF, AdaBoost) and deep learning-based (DBN, CNN-LSTM, and RNN) machine learning techniques. The proposed method is feature centric and extracted the (sentiment, content, tweet specific and part-of-speech) features from both datasets of SemEval2016 and SemEval2017. The proposed study has also explored the role of deep features such as GloVe and Word2Vec for stance classification which has not received attention yet for stance detection. Some base line features such as Bag of words, N-gram, TF-IDF are also extracted from both datasets to compare the proposed features along with deep features. The proposed features are ranked using feature ranking methods such as (information gain, gain ration and relief-f). Further, the results are evaluated using standard performance evaluation measures for stance classification with existing studies. The calculated results show that the proposed feature sets including sentiment, (part-of-speech, content, and tweet specific) are helpful for stance classification when applied with SVM and GloVe a deep feature has given the best results when applied with deep learning method RNN.
Keywords: Stance classification, deep learning, deep features, sentiment analysis, content based
DOI: 10.3233/JIFS-202269
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 5, pp. 9721-9740, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]