Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sworna Kokila, M.L.a; * | Gomathi, V.b
Affiliations: [a] Ponjesly College of Engineering, Nagercoil-3, Tamil Nadu, India | [b] National Engineering College, Kovilpatti, TamilNadu, India
Correspondence: [*] Corresponding author. M.L. Sworna Kokila. E-mail: [email protected].
Abstract: Automatic Person Re-identification by video surveillance is commonly used in different applications. Perhaps the human uniqueness criteria for tracking the presence of the same person across multiple camera views and a person’s growth identification is extremely challenging. To solve the above problem, we propose an efficient Auto Track Regression System (ATRF) based on a deep learning technique that uses an eminent representation strategy along with recognition. In this work, the Auto Wiley Detective (AWD) approach is proposed for the representation of features that can collect valuable information by monitoring individuals. After obtaining important information on the characteristics, it is possible to define the personal growth identity of the generation. The OPVC (Original Pick Virtual Classifier) is used for accurate classification of the queried person from a dense area by utilizing features of a person’s growth identity extracted from feature extraction by the Auto Wiley Detection Method. The proposed Originated Pick Virtual Classifier (OPVC) uses Platt scaling (originated pick) on probit regression (virtual) to train the featured data set for accurate person re-identification, which is boosted by the Karush–Kuhn–Tucker (KKT) conditions to reduce false re-identification. Since the gallery information is trained using the Backpropagation method and smoothened analysis through approximated output, the Auto Wiley Detection Method proficiently detects the required information automatically. This also helps to detect the person query image from the database, which contains a vast collection of video images based on the similarity features identified in the query image and the detailed features extracted from the query image. The classification is completed automatically, and then the Person Re-Identification from the databases is performed accurately and efficiently. Henceforth, the proposed work effectively extracts reliable height and age estimates with improved flexibility and individual re-identifying capabilities.
Keywords: Auto track regression framework, auto wiley detection, originated pick virtual classifier
DOI: 10.3233/JIFS-201977
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 4277-4294, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]