Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Yua; b | Yu, Zhengtaoa; b; * | Mao, Cunlia; b | Huang, Yuxina; b | Gao, Shengxianga; b
Affiliations: [a] Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China | [b] Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, China
Correspondence: [*] Corresponding author. Zhengtao Yu. Tel.: +86 138 8861 6568; E-mail: [email protected].
Abstract: Correlation analysis of law-related news is a task to of dividing news into law-related or law-unrelated news, which is the basis of public opinion analysis. Public opinion news consists of the title and the body. The title describes the theme of the news, and the body describes the content of the news. They are equally important and interdependent in the analysis of lawrelated news. Therefore, we make full use of the dependence between the title and the body and propose a learning method that combines the bidirectional attention flow of the title and the body. This method encodes the title and the body respectively by using a bidirectional gated recurrent unit (BiGRU) to obtain the word-level feature matrix of the title and the word-level feature matrix of the body. Then it further extracts the law relevant key features from the body feature matrix, to obtain the word-level feature representation of the body. Finally, we combine the word-level feature representation of the title and the body to build bidirectional attention flow. In this way, the information of the two is fully integrated and interacted to improve the accuracy of the legal correlation analysis of news. To verify the validity of the method in this paper, we conducted experiments on the analysis of law-related news. The results show that our method has achieved good results. Compared with the baseline method, the F1 values of our method is increased by 2.2%, which strongly proves that the interaction between title and body has a good supporting effect on news text classification.
Keywords: Law-related news, public opinion analysis, title combined body, bidirectional attention flow
DOI: 10.3233/JIFS-201162
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 3, pp. 5623-5635, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]