Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mostafa, Samih M.; *
Affiliations: Faculty of Computers and Information, South Valley University, Qena, Egypt
Correspondence: [*] Corresponding author. Samih M. Mostafa, Faculty of Computers and Information, SouthValley University, Qena, Egypt. E-mail: [email protected].
Abstract: Data preprocessing is a necessary core in data mining. Preprocessing involves handling missing values, outlier and noise removal, data normalization, etc. The problem with existing methods which handle missing values is that they deal with the whole data ignoring the characteristics of the data (e.g., similarities and differences between cases). This paper focuses on handling the missing values using machine learning methods taking into account the characteristics of the data. The proposed preprocessing method clusters the data, then imputes the missing values in each cluster depending on the data belong to this cluster rather than the whole data. The author performed a comparative study of the proposed method and ten popular imputation methods namely mean, median, mode, KNN, IterativeImputer, IterativeSVD, Softimpute, Mice, Forimp, and Missforest. The experiments were done on four datasets with different number of clusters, sizes, and shapes. The empirical study showed better effectiveness from the point of view of imputation time, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2 score) (i.e., the similarity of the original removed value to the imputed one).
Keywords: Data preprocessing, missing data, imputation, missingness mechanisms
DOI: 10.3233/JIFS-201077
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 947-972, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]