Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Karimzadeh Parizi, Mortezaa | Keynia, Farshidb; * | Khatibi bardsiri, Amida
Affiliations: [a] Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran | [b] Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
Correspondence: [*] Corresponding author. Farshid Keynia, Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. E-mail: [email protected].
Abstract: Success of metaheuristic algorithms depends on the efficient balance between of exploration and exploitation phases. Any optimization algorithm requires a combination of diverse exploration and proper exploitation to avoid local optima. This paper proposes a new improved version of the Woodpecker Mating Algorithm (WMA), based on opposition-based learning, known as the OWMA aiming to develop exploration and exploitation capacities and establish a simultaneous balance between these two phases. This improvement consists of three major mechanisms, the first of which is the new Distance Opposition-based Learning (DOBL) mechanism for improving exploration, diversity, and convergence. The second mechanism is the allocation of local memory of personal experiences of search agents for developing the exploitation capacity. The third mechanism is the use of a self-regulatory and dynamic method for setting the Hα parameter to improve the Running Away function (RA) performance. The ability of the proposed algorithm to solve 23 benchmark mathematical functions was evaluated and compared to that of a series of the latest and most popular metaheuristic methods reviewed in the research literature. The proposed algorithm is also used as a Multi-Layer Perceptron (MLP) neural network trainer to solve the classification problem on four biomedical datasets and three function approximation datasets. In addition, the OWMA algorithm was evaluated in five optimization problems constrained by the real world. The simulation results proved the superior and promising performance of the proposed algorithm in the majority of evaluations. The results prove the superiority and promising performance of the proposed algorithm in solving very complicated optimization problems.
Keywords: Optimization, metaheuristic, woodpecker mating algorithm, distance opposition-based learning
DOI: 10.3233/JIFS-201075
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 919-946, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]