Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cao, Lianglina; * | Ben, Keronga | Peng, Hub
Affiliations: [a] School of Electronics and Engineering, Naval University of Engineering, WuHan, China | [b] School of Information Science and Technology, Jiujiang University, Jiujiang, China
Correspondence: [*] Corresponding author. Lianglin Cao, School of Electronics and Engineering, Naval University of Engineering, WuHan, 430033, China. E-mails: [email protected] and [email protected].
Abstract: Firefly algorithm (FA) is one of most important nature-inspired algorithm based on swarm intelligence. Meanwhile, FA uses the full attraction model, which results too many unnecessary movements and reduces the efficiency of searching the optimal solution. To overcome these problems, this paper presents a new job, how the better fireflies move, which is always ignored. The novel algorithm is called multiple swarm strategy firefly algorithm (MSFFA), in which multiple swarm attraction model and status adaptively switch approach are proposed. It is characterized by employing the multiple swarm attraction model, which not only improves the efficiency of searching the optimal solution, but also quickly finds the better fireflies that move in free status. In addition, the novel approach defines that the fireflies followed different rules in different status, and can adaptively switch the status of fireflies between the original status and the free status to balance the exploration and the exploitation. To verify the robustness of MSFFA, it is compared with other improved FA variants on CEC2013. In one case of 30 dimension on 28 test functions, the proposed algorithm is significantly better than FA, DFA, PaFA, MFA, NaFA,and NSRaFA on 24, 23, 23, 17, 15, and 24 functions, respectively. The experimental results prove that MSFFA has obvious advantages over other FA variants.
Keywords: Fiefly algorithm, multiple swarm strategy, adaptively switch, global optimization
DOI: 10.3233/JIFS-200619
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 1, pp. 99-112, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]