Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: El_Tokhy, Mohamed S.; *
Affiliations: Engineering Department, NRC, Egyptian Atomic Energy Authority, P.No. 13759, Inshas, Egypt
Correspondence: [*] Corresponding author. Mohamed S. El_Tokhy, Engineering Department, NRC, Egyptian Atomic Energy Authority, P.No. 13759, Inshas, Egypt. E-mail: [email protected].
Abstract: Development of a robust triple multimodal biometric approach for human authentication using fingerprint, iris and voice biometric is the main objective of this manuscript. Accordingly, three essential algorithms for biometric authentication are presented. The extracted features from these multimodals are combined via feature fusion center (FFC) and feature scores. These features are trained through artificial neural network (ANN) and support vector machine (SVM) classifiers. The first algorithm depends on boundary energy method (BEM) extracted features from fingerprint, normalized combinational features from iris and dimensionality reduction methods (DRM) from voice using sum/average FFC. The second proposed algorithm uses extracted features from zoning method of fingerprint, SIFT of iris and higher order statistics (HOS) of voice signals. The third proposed algorithm consists of extracted features from zoning method for fingerprint, SIFT from iris and DRM from voice signals. Classification accuracy of implemented algorithms is estimated. Comparison between proposed algorithms is introduced in terms of equal error rate (EER) and ROC curves. The experimental results confirm superiority of second proposed algorithm which achieves a classification rate of 100% using SVM classifier and sum FFC. From computational point of view, the first algorithm consumes the lowest time using SVM classifier. On other hand, the lowest EER is achieved by first proposed algorithm for extracted features from Karhunen-Loeve transform (KLT) method of DRM. Additionally, the lowest ROC curves are accomplished respectively for extracted features from multidimensional scaling (MDS), generated ARMA synthesis and Isomap features. Their accuracy is improved with SVM. Also, the sum FFC introduces efficient results compared to average FFC. These algorithms have the advantages of robustness and the strength of selecting unimodal, double and triple biometric authentication. The obtained results accomplish a remarkable accuracy for authentication and security within multi practical applications.
Keywords: Recognition system, digital signal and image processing, authentication systems
DOI: 10.3233/JIFS-200425
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 647-672, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]