Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jiang, Jianminga | Wu, Wen-Zeb; * | Li, Qib | Zhang, Yuc
Affiliations: [a] School of Mathematics and Statistics, Baise University, Baise, China | [b] School of Economics and Business Administration, Central China Normal University, Wuhan, China | [c] Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Correspondence: [*] Corresponding author. Wen-Ze Wu, School of Economics and Business Administration, Central China Normal University, Wuhan 430079, China. E-mail: [email protected].
Abstract: The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable development of national economy. Developing a proper forecasting model for the quarterly hydropower generation is crucial for associated energy sectors, which could assist policymakers in adjusting corresponding schemes for facing with sustained demands. For this purpose, this paper presents a fractional nonlinear grey Bernoulli model (abbreviated as FANGBM(1,1)) coupled seasonal factor and Particular Swarm Optimization (PSO) algorithm, namely PSO algorithm-based FASNGBM(1,1) model. In the proposed method, the moving average method that eliminates the seasonal fluctuations is introduced into FANGBM(1,1), then in which the structure parameters of FASNGBM(1,1) are determined by PSO. Based on hydropower generation of China from the first quarter of 2011 to the final quarter of 2018 (2011Q1-2018Q4), the numerical results show that the proposed model has a better performance than that of other benchmark models. Eventually, the quarterly hydropower generation of China from 2019 to 2020 are forecasted by the proposed model, according to results, the hydropower generation of China will reach 11287.14 × 108 Kwh in 2020.
Keywords: Quarterly hydropower generation, seasonal fluctuation, FASNGBM(1,1), Particle Swarm Optimization (PSO)
DOI: 10.3233/JIFS-200113
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 507-519, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]