Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Han* | Gegov, Alexander | Cocea, Mihaela
Affiliations: School of Computing, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth, PO1 3HE, UK
Correspondence: [*] Corresponding author. Han Liu, School of Computing, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth, PO1 3HE, UK. Tel.: +44 023 9284 6460; Fax: +44 023 9284 6411; E-mail: [email protected].
Abstract: Due to the vast and rapid increase in data, data mining has become an increasingly important tool for the purpose of knowledge discovery in order to prevent the presence of rich data but poor knowledge. Data mining tasks can be undertaken in two ways, namely, manual walkthrough of data and use of machine learning approaches. Due to the presence of big data, machine learning has thus become a powerful tool to do data mining in intelligent ways. A popular approach of machine learning is inductive learning, which can be used to generate a rule set (a set of rules) using a particular algorithm. Inductive learning can involve a single base algorithm learning from a single data set following a standard learning approach. In this approach, the learning algorithm can generate a single rule set such as decision trees. On the other hand, the inductive learning can also involve a single base algorithm learning from multiple data sets following an ensemble learning approach. In this approach, the learning algorithm can generate multiple rule sets such as random forests. The latter approach is usually designed to reduce overfitting of models that usually arises when the former approach is adopted. In this context, the ensemble learning approach usually enables the improvement of the overall accuracy in prediction. The aim of this paper is to introduce a new approach of ensemble learning called Collaborative Rule Generation. In the new approach, the inductive learning involves multiple base algorithms learning from a single data set to generate a single rule set, which aims to enable each rule to have a higher quality. This paper also includes an experimental study validating the Collaborative Rule Generation approach and discusses the results in both quantitative and qualitative ways.
Keywords: Data mining, machine learning, ensemble learning, rule based systems, rule based classification, if-then rules
DOI: 10.3233/IFS-151997
Journal: Journal of Intelligent & Fuzzy Systems, vol. 30, no. 4, pp. 2277-2287, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]