Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Thakran, Snekha; *
Affiliations: Delhi Technological University, Bhagwan Parshuram Institute of Technology, New Delhi, India
Correspondence: [*] Corresponding author. Snekha Thakran, Delhi Technological University, Bhagwan Parshuram Institute of Technology, New Delhi, India. E-mail: [email protected].
Abstract: The Electrocardiogram (ECG) signal records the electrical activity of the heart. It is very difficult for physicians to analyze the ECG signal if noise is embedded during acquisition to inspect the heart’s condition. The denoising of electrocardiogram signals based on the genetic particle filter algorithm(GPFA) using fuzzy thresholding and ensemble empirical mode decomposition (EEMD) is proposed in this paper, which efficiently removes noise from the ECG signal. This paper proposes a two-phase scheme for eliminating noise from the ECG signal. In the first phase, the noisy signal is decomposed into a true intrinsic mode function (IMFs) with the help of EEMD. EEMD is better than EMD because it removes the mode-mixing effect. In the second phase, IMFs which are corrupted by noise is obtained by using spectral flatness of each IMF and fuzzy thresholding. The corrupted IMFs are filtered using a GPF method to remove the noise. Then, the signal is reconstructed with the processed IMFs to get the de-noised ECG. The proposed algorithm is analyzed for a different local hospital database, and it gives better root mean square error and signal to noise ratio than other existing techniques (Wavelet transform (WT), EMD, Particle filter(PF) based method, extreme-point symmetric mode decomposition with Nonlocal Means(ESMD-NLM), and discrete wavelet with Savitzky-Golay(DW-SG) filter).
Keywords: Genetic particle filter algorithm, ensemble empirical mode decomposition, fuzzy thresholding, ECG denoising
DOI: 10.3233/JIFS-191518
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6773-6782, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]