Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Feng, Naidan | Liang, Yongquan; *
Affiliations: College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
Correspondence: [*] Corresponding author. Yongquan Liang, College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China. E-mail: [email protected].
Abstract: Aiming at the imprecise and uncertain data and knowledge, this paper proposes a novel prior assumption by the rough set theory. The performance of the classical Bayesian classifier is improved through this study. We applied the operations of approximations to represent the imprecise knowledge accurately, and the concept of approximation quality is first applied in this method. Thus, this paper provides a novel rough set theory based prior probability in classical Bayesian classifier and the corresponding rough set prior Bayesian classifier. And we chose 18 public datasets to evaluate the performance of the proposed model compared with the classical Bayesian classifier and Bayesian classifier with Dirichlet prior assumption. Sufficient experimental results verified the effectiveness of the proposed method. The mainly impacts of our proposed method are: firstly, it provides a novel methodology which combines the rough set theory with the classical probability theory; secondly, it improves the accuracy of prior assumptions; thirdly, it provides an appropriate prior probability to the classical Bayesian classifier which can improve its performance only by improving the accuracy of prior assumption and without any effect to the likelihood probability; fourthly, the proposed method provides a novel and effective method to deal with the imprecise and uncertain data; last but not least, this methodology can be extended and applied to other concepts of classical probability theory, which providing a novel methodology to the probability theory.
Keywords: Rough set theory, prior assumption, Bayesian classifier, approximation quality, probability theory
DOI: 10.3233/JIFS-190517
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 3, pp. 2647-2655, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]