Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bush, Idoko John; * | Abiyev, Rahib | Arslan, Murat
Affiliations: Department of Computer Engineering, Applied Artificial Intelligence Research Center, Near East University, North Cyprus, Turkey
Correspondence: [*] Corresponding author. Idoko John Bush, Department of Computer Engineering, Applied Artificial Intelligence Research Center, Near East University, North Cyprus, Via Mersin-10, Turkey. E-mail: [email protected].
Abstract: In this study, we propose a vision-based mouse controller capable of controlling objects from a distant location via hand gestures. The proposed hybrid model constitutes hand detection, prediction of hand states and direction and finally, with the aid of deep learning algorithm, we systematically control hand gestures to reposition objects on computer screen. This hybrid system is explicitly designed to control mouse on computer screen during formal presentation. Random movement of hand from up to down and right to left move the mouse pointer and sends signal to the system utilizing states of the hand. Here, close hand places the mouse button on active mode while open hand releases the button. The proposed hybrid model is made up of two modules: Single Shot Multi Box Detection (SSD) structure utilized to detect hand while Convolutional Neural Network (CNN) is utilized for prediction. For comparative purposes, we performed similar experiment where SSD is used for hand detection while Radial Basis Function Network (RBFN) is used for hand states prediction. In the comparative results of hand states prediction, SSD+CNN greatly outperformed SSD+RBFN. The proposed hybrid model is vision-based hence, it does not require additional hardware to perform its task. Overall performance of the framework depicts that the system is accurate and robust.
Keywords: Hand gesture, convolutional neural network, radial basis function network, computer vision, deep learning
DOI: 10.3233/JIFS-190353
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 3, pp. 4241-4252, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]