Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: George, Sheeja P.a; b; * | Isaac, Johneyb | Philip, Jacobc
Affiliations: [a] Department of Electronics, College of Engineering, Chengannur, Kerala, India | [b] Department of Instrumentation, CUSAT, Kochi, Kerala, India | [c] Amaljyothi College of Engineering, Kanjirappally, Kottayam, Kerala, India
Correspondence: [*] Corresponding author. Sheeja P. George, E-mail: [email protected].
Abstract: A higher operating frequency is desirable for Surface Acoustic Wave (SAW) based sensors as they become more sensitive at high frequencies. The acoustic wave gets more confined near the surface at high frequencies and become more sensitive to the external stimulations. This makes SAW devices a suitable device for sensing gaseous state chemicals. SAW devices have become the basic building block of wireless sensor networks with its advantages enabling remote sensing. In this paper, a SAW based Hydrogen sensor is realized through the Finite Element Analysis tool ANSYS. Hydrogen even though has a significant role in many industries, its explosive nature demands constant monitoring. SAW delay line made up of XY-LiNbO3 as substrate with a thin layer of Palladium coated along the delay length as the sensing element is modeled. Palladium with its high affinity for Hydrogen absorbs the same and undergoes changes in properties like density and stiffness. This disturbs the surface wave propagation and in turn, affects the operating frequency which is the sensor response parameter. The frequency shift of 1.91 MHz for Hydrogen concentration of 0.3 a.f. as compared to 0.49 MHz with YZ- LiNbO3. The operating frequency also shifts to a higher range as the acoustic velocity of the substrate increases.
Keywords: SAW, gas sensor, wireless sensor, FEM, ANSYS
DOI: 10.3233/JIFS-189895
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 5, pp. 5759-5768, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]