Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Rudhra, Ba; * | Malu, Ga | Sherly, Elizabetha | Mathew, Robertb
Affiliations: [a] Indian Institute of Information Technology and Management, Trivandrum, India | [b] Anugraha Neurocare, Trivandrum, India
Correspondence: [*] Corresponding author. Rudhra B, E-mail: [email protected].
Abstract: Normal Pressure Hydrocephalus (NPH), an Atypical Parkinsonian syndrome, is a neurological syndrome that mainly affects elderly people. This syndrome shows the symptoms of Parkinson’s disease (PD), such as walking impairment, dementia, impaired bladder control, and mental impairment. The Magnetic Resonance Imaging (MRI) is the aptest modality for the detection of the abnormal build-up of cerebrospinal fluid in the brain’s cavities or ventricles, which is the major cause of NPH. This work aims to develop an automated biomarker for NPH segmentation and classification (NPH-SC) that efficiently detect hydrocephalus using a deep learning-based approach. Removal of non-cerebral tissues (skull, scalp, and dura) and noise from brain images by skull stripping, unsharp-mask based edge sharpening, segmentation by marker-based watershed algorithm, and labelling are performed to improve the accuracy of the CNN based classification system. The brain ventricles are extracted using the external and internal markers and then fed into the convolutional neural networks (CNN) for classification. This automated NPH-SC model achieved a sensitivity of 96%, a specificity of 100%, and a validation accuracy of 97%. The prediction system, with the help of a CNN classifier, is used for the calculation of test accuracy of the system and obtained promising 98% accuracy.
Keywords: Structural magnetic resonance imaging, normal pressure hydrocephalus, convolutional neural networks
DOI: 10.3233/JIFS-189852
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 5, pp. 5299-5307, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]