Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Singh, Saumya; * | Srivastava, Smriti
Affiliations: Instrumentation and Control Engineering Department, Netaji Subhas University of Technology
Correspondence: [*] Corresponding author. Saumya Singh, Instrumentation and Control Engineering Department, Netaji Subhas University of Technology. Tel.: +91 99580 16663; E-mail: [email protected].
Abstract: In the field of data analysis clustering is considered to be a major tool. Application of clustering in various field of science, has led to advancement in clustering algorithm. Traditional clustering algorithm have lot of defects, while these defects have been addressed but no clustering algorithm can be considered as superior. A new approach based on Kernel Fuzzy C-means clustering using teaching learning-based optimization algorithm (TLBO-KFCM) is proposed in this paper. Kernel function used in this algorithm improves separation and makes clustering more apprehensive. Teaching learning-based optimization algorithm discussed in the paper helps to improve clustering compactness. Simulation using five data sets are performed and the results are compared with two other optimization algorithms (genetic algorithm GA and particle swam optimization PSO). Results show that the proposed clustering algorithm has better performance. Another simulation on same set of data is also performed, and clustering results of TLBO-KFCM are compared with teaching learning-based optimization algorithm with Fuzzy C- Means Clustering (TLBO-FCM).
Keywords: Kernel fuzzy C means, TLBO, metaheuristic, multi-objective
DOI: 10.3233/JIFS-189771
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 1051-1059, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]