Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers from the 9th International Multi-Conference on Engineering and Technology Innovation 2019 (IMETI2019)
Guest editors: Wen-Hsiang Hsieh
Article type: Research Article
Authors: Huang, Chung-Lina; * | Huang, Chung-Chib
Affiliations: [a] Department of Applied Foreign Language, Lunghwa University of Science and Technology, Taoyuan City, Taiwan, ROC | [b] Department of Automation and Control Engineering, Far East University, Tainan City, Taiwan, ROC
Correspondence: [*] Corresponding author. Chung-Lin Huang, Department of Applied Foreign Language, Lunghwa University of Science and Technology, Taoyuan City, 333, Taiwan, ROC. E-mail: [email protected].
Abstract: Knowledge graphs are useful sources for various AI applications, however the basic paradigm to support pilot training is still unclear. In the paper, It is proposed to generate the customized knowledge graph of flight trainings using machine learning method for the flight training program. In order to provide the successful key to the further understanding of the learning problems between the students and the instructors. In this research, we collected data from an aeronautical academic in Taiwan that students were trained for Recreation Pilot License Program. We performed a test on 24 students at the first of each training course, 16 data of collected been used on building the module, 8 of them used to exam the module. There are 12 courses in the training program, and 30 hours total time were suggested by academic. The score which we applied on test were based on LCG method which is the sum of Maneuver and SRM Grades. For the indicators of course component in Learner Centered Grading, namely (a) CCS1: Operation & Effect of Controls; (b) CCS2: Straight & Level; (c) CCS3: Climbing & Descending; (d) CCS4: Turning; (e) CCS5: Stalling; (f) CCS6: Revision; (g) CCS7: Circuits; (h) CCS8: Cross-Wind Training; (i) CCS9: Circuit Emergency; (j) CCS10: Solo Circuit; (k) CCS11: Forced Landing; and (l) CCS12: Precautionary & Searching Landing. Through the method of Knowledge Graph, we deduct and predict the number of hours that need to be added for each student’s learning. Using the dynamic knowledge graph to display the key issues of the course learning continuously, and make follow-up decisions for the students, instructors and airliners.
Keywords: Customized knowledge graph, FAA-industry training standards, machine learning
DOI: 10.3233/JIFS-189619
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 4, pp. 7969-7979, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]