Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers from the 9th International Multi-Conference on Engineering and Technology Innovation 2019 (IMETI2019)
Guest editors: Wen-Hsiang Hsieh
Article type: Research Article
Authors: Chen, Yen-Hunga; * | Chang, Arthurb | Huang, ChunWeic
Affiliations: [a] Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan | [b] Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Yunlin, Taiwan | [c] Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan
Correspondence: [*] Corresponding author. Yen-Hung Chen, Department of Information Management, National Taipei University of Nursing and Health Sciences, No. 365, Ming-te Road, Peitou District, Taipei City, 112, Taiwan. E-mail: [email protected].
Abstract: The cloud computing and Internet of Things (IoT) have become two key technologies to meet future business requirements. However, a massive scale of Distributed Denial-of-Service (DDoS) has been widely applied to congest network critical links and to paralyze the cloud and IoT service. This is mainly due to DDoS is easily implemented, obfuscated, and occulted by launching large-scale legitimate low-speed flows and rolling target links to paralyze target network areas. Many metrics and risk access management frameworks to evaluate the impact of DDoS are proposed. However, they all lack time granularity to evaluate the cost of different scales of attacks in IoT or large-scale network structure. This study proposes an AI Driven Evaluation framework, called ADE, that applies Convolution Neural Networks to statistically evaluate the network status through end-to-end functionality (Input: network status; Output: DDoS detected or not) without any manual intervention. ADE provides quantitative security risk analysis by using learning time as the control variable, network structure as the independent variable, and time to identify DDoS as the dependent variable. The learning time to detect DDoS event and recover the system is then applied to evaluate the scale of this DDoS, the reasonability of the regulated RTO, and the vulnerability of the current net-work topology and the improvement due to the new security solution. The experiment results demonstrate the contributions of ADE are (1) providing objective and quantitative analytical security risk assessment indicator, (2) providing an autonomic DDoS defense framework without any manual intervention which allows cloud computing and Internet of Things company focuses on their service and leaves security defending to ADE, and (3) demonstrating the possibility of AI assisted risk assessment which enables security defense solution buyer with less security domain experts to evaluate suitable network defense strategy.
Keywords: SDN, machine learning, IoT, mobile broadband, convolutional neural networks, distributed denial-of-service
DOI: 10.3233/JIFS-189589
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 4, pp. 7691-7699, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]